CHAPTER

TWO
PROGRAMMING LANGUAGES

We assume the readers of this book are familiar with material covered in a typical
undergraduate course on programming languages. Texts for such classes include
Pratt [Pratt 75], Organick, Forsythe, and Plummer [Organick 75], and Ledgard
and Marcotty [Ledgard 81]. However, not all readers have identical backgrounds.
This chapter reviews two aspects of programming languages that are critical for
the remainder of our discussion: the formal structure of languages (syntax and
semantics) and the practical aspects of programming (pragmatics).

2-1 SYNTAX AND SEMANTICS

Programming languages are defined by their syntax and semantics. The syntaz of
a programming language specifies the strings of symbols that are legal programs.
The semantics specifies the meaning of each syntactic structure—the action to be
taken when that structure is encountered. Thus, the string of characters “3+5”
might be a syntactically legal program segment. This string uses numerals “3”
and “5” and a plus sign. Semantically, it might assert that the operation addition
is to be performed on the integers 3 and 5.

16

PROGRAMMING LANGUAGES 17

Syntax

Perhaps the most useful broad classification of programming languages divides
them into imperative and applicative languages. Imperative languages are state-
ment- and sequence-oriented. Such languages associate names (variables) with
the program state. A programmer can explicitly change the meaning of a name
(and the program state) with assignment statements. Input and output are com-
mands, executed like other commands. Repetition is shown by explicit repetitive
statements (such as for and while loops). In general, imperative languages tend
towards a complicated syntax, dependent on keywords and punctuation. These
languages draw their inspiration from the architecture of the classical von Neu-
mann computer and parallel the state orientation of automata like Turing ma-
chines. Fortran, Algol, Cobol, and Pascal are examples of imperative languages.

Applicative languages express programs through function application and
binding. These languages associate names with values by function application
and parameter binding. This binding provides just a name for the bound value,
not the ability to change it. In an applicative system, inputs are the original ar-
guments to the program/function, and the output is the function’s result. Repe-
tition is achieved by recursion. By and large, the syntax of applicative languages
is more uniform than that of imperative languages. The classical applicative pro-
gramming language, pure Lisp [McCarthy 60], is almost keyword-free. Lisp uses
parentheses instead of keywords to show syntactic forms. Applicative languages
are intellectual descendants of the lambda calculus. Pure Lisp and Backus’s FP
[Backus 78] are examples of applicative systems.*

The difference between imperative and applicative languages is primarily a
difference of style. Modern languages frequently blend elements of each. Algol and
Pascal permit functional subprograms and recursion; Lisp includes side effects
and iteration. Nevertheless, the difference in appearance (though not necessarily
substance) between the two forms is striking enough to merit noting. We will
see contrasting examples of applicative and imperative styles in the remainder
of the book.

Semantics

The syntax of a programming language describes which strings of symbols are le-
gal programs. Programming languages would not be an interesting subject unless
these strings could also effect actions. In general, the semantics of a programming
language is the set of actions that programs in that language can perform. The
semantics of a programming language associates particular actions (or functions)
with particular syntactic structures.

* FP is actually a special variety of applicative system, a functional language. FP does not
have variables or an abstraction operator (like lambda). It therefore does not need a renaming
operation.

18 FOUNDATIONS

We can view the semantics of a particular programming language either
with respect to computability theory, formal semantics, or with respect to the
language’s underlying conceptual model, operational semantics. Computability
theory is concerned with the class of functions that can be computed by a given
language. Many common languages, like Lisp and Algol, are computationally
Turing-equivalent. The distributed languages we study are more computation-
ally powerful than Turing machines, in that they can compute nonfunctional
(multivalued) results. Computationally, such systems are equivalent to Turing
machines that can also consult an unbounded random-number generator.

Every language designer has a model of the operational primitives that the
language manipulates. In conventional computers, such primitives include arith-
metic, logical, and input-output operations. Distributed language designers pro-
vide, in addition to these primitives, the primitives of the distributed domain.
Typically, these primitives manipulate processes (automata), messages (com-
munications between automata), and other abstractions. The semantics of any
particular system defines what can be done with these objects—for example, how
processes are created or how the order of message reception can be controlled.

A key theme in current programming language research is proving the cor-
rectness of programs. This involves specifying the meaning of each language con-
struct, formalizing the problem statement, and showing that a given program
solves the problem. Paralleling the division between imperative and applicative
syntactic styles, there are two major themes in program semantics and verifi-
cation: axiomatic and denotational. Aziomatic formalisms lend themselves to
statement-oriented languages. These formalisms describe the state of the pro-
gram execution by logical assertions before and after each statement. Denota-
tional formalisms are oriented towards functional application. These formalisms
build the meaning of a function application from the meanings of the func-
tion’s arguments. Wand [Wand 80] includes a brief introduction to these themes.
Thorough discussions of axiomatic semantics can be found in Alagic and Arbib
[Alagic 78] and Gries [Gries 81], and of denotational semantics in Stoy [Stoy 77]
and Gordon [Gordon 79].

2-2 PRAGMATIC STRUCTURES

Since programming languages are (by and large) formally equivalent, why does
anyone bother to invent a new language? Language designers create new lan-
guages (and new programming structures) to aid in the practical aspects of pro-
gramming — programming language pragmatics. For example, a programming
language may provide both linked record structures and arrays. Pragmatically,
arrays are used for direct access to fixed-size structures, while linked records
are used for serial or logarithmic access to dynamic structures. However, noth-
ing in the syntax or semantics of a language forces those choices. The choice
among programming languages is usually one of pragmatics: the constructs of

PROGRAMMING LANGUAGES 19

the favored language simplify the creation of correct and efficient programs. Pro-
gramming languages are themselves inherently pragmatic systems, designed to
replace cumbersome assembly language programming.

In this section we consider the pragmatic aspects of three programming
language concepts: data abstraction, indeterminacy, and concurrency.

Data Abstraction

Traditionally, programming languages have divided the world into programs and
data. Programs are active; programs do things. Data is passive; data has things
done to it. In a classical programming language, the ways of describing and using
programs are distinct from the ways of describing and using data. There might
be several ways of computing a particular function—for example, evaluating an
arithmetic expression or looking up the value in a table. Classical programming
languages make the choice of implementation obvious to any user.

Data abstraction provides an alternative to the fully visible programming
style. Data abstraction merges the notions of program and data. This results in
objects—program structures that can act both as program and as data. Objects
hide the particular implementation of any given behavior from the user. Instead,
a data abstraction system presents only an interface to an abstract object.

Typically, the data abstraction interface is just the set of operations that
can be executed on an object. If the abstract object has associated storage, these
operations often have side effects on that storage. For example, a data abstraction
of finite sets would provide functions for testing whether an element is in a set,
returning the size of a set, or generating the union of two sets. The data structure
used to encode sets remains hidden. The set abstraction can be programmed in
many different ways. For example, one can represent a set by a bit vector, a linked
list, a hashed array, or even a program. Data abstraction permits the programmer
(abstraction implementor) to choose the appropriate method for each individual
set. The same abstraction can support several different implementations of sets
simultaneously, with the differences invisible to the “user-level” programs. The
implementor of a data abstraction can rely on the fact that routines that use an
abstract data type have no access to the underlying representation that encodes
that abstraction. One can safely modify the underlying implementation as long
as it continues to satisfy the abstraction’s specifications. Data abstraction is a
cornerstone of many modern programming systems.

The earliest programming language implementation of data abstraction
was the class mechanism of Simula 67 [Birtwistle 73]. Languages such as
Smalltalk [Goldberg 83], CLU [Liskov 77], and Alphard [Shaw 81] have pop-
ularized the ideas of associating program with data and hiding implementa-
tion. Other programming language constructs that combine program and data
include coroutines [Conway 63a], closures (a combination of environment and
lambda-expression, see, for example, [Steele 78]), and thunks (a combination of
environment and expression, [Ingerman 61]).

20 FOUNDATIONS

Indeterminacy

Most programming languages can describe only sequential, determinate pro-
grams. That is, given a particular input, the program has only a single possible
execution path. Guarded commands is a programming language construct, in-
troduced by Edsger Dijkstra [Dijkstra 75], that allows indeterminacy —any of
several different execution paths may be possible for a given input.

Obviously, the most primitive way of stating, “do one of these statements,”
would be to have a disjunctive statement to that effect. Guarded commands take
this idea one step further. To provide the programmer with greater control over
which statements can be executed next, each of the candidate indeterminate
actions is “guarded” by a boolean expression. That statement can be selected
only if its boolean expression is true. Thus, a guarded command is both a syntax
for indeterminacy and a variant of the conditional statement.

More specifically, we build a guard clause from a boolean guard B and a
statement action S as

B—S
We create a guarded command by joining several guard clauses with [s
B, -5 0By;—5S0 ---0B,—5,

To execute a guarded command, the system finds a boolean expression By whose
value is “true” and executes the corresponding action Sj. The system simulates
parallel guard evaluation.

Guarded commands whose guards are all false are treated differently in dif-
ferent languages. Some systems interpret this as an error, others as cause for
exiting a surrounding loop, and still others as blocking the process until one
of the guards becomes true. Of course, this last alternative is viable only for
concurrent systems.

A program for computing the greatest common divisor of two numbers pro-
vides a simple illustration of guarded commands. We assume that a guarded
command with false guards exits its surrounding loop. Euclid’s algorithm for the
greatest common divisor of two positive integers replaces the larger of the two
with the difference between the larger and the smaller until the two are equal.
As a program with a guarded command, this becomes

loop
X>y — X:=xX-—-Y
a
X<y — y:i=y-—x
end loop

Variants of guarded commands are common in distributed programming
languages. This is because guarded commands provide a concise way of reacting

PROGRAMMING LANGUAGES 21

to several possible different events without specifying a preferred or predicted
order. Thus, a process expecting a message on one of several channels could have
reception commands for each joined in a guarded command.

Concurrency

Guarded commands allow one of several alternatives to be executed, without
specifying a preference among them. Concurrent statements allow several state-
ments to appear to be executed “at the same time.” Another name for concur-
rency is parallelism.

Syntactically, the simplest way to declare that several statements are con-
current is to have a structure that asserts, “execute these statements in paral-
lel.” A possible (imperative) syntax for concurrency is to wrap the concurrent
statements between special delimiters, such as parbegin and parend:

parbegin
statement; ;
statementsy ;
statements ;

statement,,
parend

An alternative parallel syntax replaces the statement sequencer (;) with a differ-
ent delimiter (||):

statement; || statement, || statements || ... || statement,

The corresponding applicative syntax would have a function whose arguments
are evaluated in parallel. For the moment, we call the agent that executes an
arm of a parallel statement a process. In Chapter 5, we present a more complete
exposition of the notion of process.*

What does it mean to execute several statements concurrently? Each state-
ment is composed of a sequence of indivisible primitives. For example, the ex-
pression

X:=y+z

* Other ways of indicating parallelism include fork and join [Conway 63b] and systems based
on the explicit declaration of processes. One problem with explicit parallel statements is the
limitation of the degree of parallelism to the structure of the program text. A second problem
is the lack of an explicit joining point for concurrent activities. Fork explicitly creates parallel
processes; join uses counters to determine when a set of parallel activities has completed. Most
of the languages for distributed computing discussed in Parts 2, 3, and 4 are based on explicit
process declaration.

22 FOUNDATIONS

might be composed of the primitive steps

Load the value of y into local register reg.
Add the value of z to reg, keeping the result in reg.
Store the contents of reg in x.

or, more symbolically,

reg :=y;
reg :=reg + z;
X :=reg

One way of viewing the semantics of concurrent statements is to see them as
requiring the execution of some permutation of the indivisible primitives of their
component statements, restricted only to keeping the primitives of a component
in their original order. For example, if statement S is composed of indivisible
primitives s;, s, and s3, and statement T is composed of #; and ¢, then the
statement

parbegin
S;
T

parend

could be executed as any of the permutations

51, 52, 83, tl; t2
51, S2, tl? 53, t2
81, 82, t1, t2, S3
81, ti, S2, 83, b2
81, ti, S2, t2, S3
51, tl? t2f 52, 53
tl; 51, 52, 83, t2
t1, s1, S2, t2, S3
t1, s1, t2, $2, S3
t1, t2, S1, $2, S3

However, s, cannot be executed before s;. The permutation mechanism hints
at a critical postulate for concurrency: We cannot make any assumptions about
the relative speeds of concurrent processes. One concurrent process may be ar-
bitrarily (though not infinitely) quicker than another. Worse yet, the processes
may be synchronized in lock step, so algorithms cannot be based on the possible
occurrence of an irregular ordering.

Treating the semantics of concurrency as a permutation of events is an as-
sumption about computational metaphysics. It asserts that events do not happen

PROGRAMMING LANGUAGES 23

simultaneously (or, similarly, that actions can be divided into atomic primitives).
A world that allowed simultaneity would need to develop a semantics of simul-
taneous actions. In real computers, hardware arbiters minimize the probability
of simultaneous events. Nevertheless, such arbiters can never completely exclude
the possibility of failure from virtually simultaneous occurrences.

PROBLEMS

2-1 Show how conventional conditional statements could be replaced by guarded commands.

2-2 If statement M is composed of m primitive steps and statement N is composed of n
primitive steps, how many different ways can the concurrent statement M||N be executed?

REFERENCES

[Alagic 78] Alagic, S., and M. A. Arbib, The Design of Well-Structured and Correct Programs,
Springer-Verlag, New York (1978). This book presents the idea of integrating top-down
development and correctness in the program development process.

[Backus 78] Backus, J., “Can Programming be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs,” CACM, vol. 21, no. 8 (August 1978),
pp- 613-641. In this paper, the creator of Fortran describes a style of programs based on
functional combination. This was Backus’s Turing award lecture.

[Birtwistle 73] Birtwistle, G. M., O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Simula Begin,
Auerbach, Philadelphia (1973). This book is an excellent introduction to Simula. Simula
was originally designed as an extension of Algol 60 for systems simulation. Simula is
important because its class mechanism is the intellectual ancestor of the current work on
abstract data types and object-oriented programming.

[Conway 63a] Conway, M. E., “Design of a Separable Transition-Diagram Compiler,” CACM,
vol. 6, no. 7 (July 1963), pp. 396-408. This was the first article to describe coroutines.

[Conway 63b] Conway, M. E., “A Multiprocessor System Design,” Proceedings AFIPS 1963
FEall Joint Computer Conference, AFIPS Conference Proceedings vol. 27, Spartan Books,
New York (1963), pp. 139-146. Conway presents the fork and join primitive.

[Dijkstra 75] Dijkstra, E. W., “Guarded Commands, Nondeterminacy, and Formal Derivation
of Programs,” CACM, vol. 18, no. 8 (August 1975), pp. 453-457. In this paper Dijkstra
introduced guarded commands and provided a formal definition of their meaning. Dijkstra
allowed guarded clauses in two different contexts, bracketed by if, fi pairs to indicate a
single test and by do, od pairs for a loop. The if construct would signal an error if it
encountered all false guards, while the do construct interpreted this as the exit condition
of the loop.

[Goldberg 83] Goldberg, A., and D. Robson, Smalltalk-80: The Language and its Implemen-
tation, Addison-Wesley, New York (1983). Smalltalk is a programming language based on
the metaphor of communicating objects. This book is not only a comprehensive descrip-
tion of the Smalltalk language but also a discussion of implementation issues involved in
building Smalltalk systems.

[Gordon 79] Gordon, M.J.C., The Denotational Description of Programming Languages,
Springer-Verlag, New York (1979). This book is a good introduction to the use of deno-
tational semantics for proving properties of programs.

24 FOUNDATIONS

[Gries 81] Gries, D., The Science of Programming, Springer-Verlag, New York (1981). Gries
develops axiomatic correctness and ties it to program development. He argues that these
mechanisms are the basis of scientific principles for program development.

[Ingerman 61] Ingerman, P., “Thunks,” CACM, vol. 4, no. 1 (January 1961), pp. 55-58.
A thunk is a pair composed of a code pointer and a static-chain (environment) pointer.
Thunks are used in imperative languages such as Algol for both call-by-name and for
passing labels and functions as arguments.

[Ledgard 81] Ledgard, H., and M. Marcotty, The Programming Language Landscape, Sci-
ence Research Associates, Chicago (1981). Ledgard and Marcotty develop the principles
of programming language design by studying a series of mini-languages that illustrate
particular themes.

[Liskov 77| Liskov, B., A. Snyder, R. R. Atkinson, and J. C. Schaffert, “Abstraction Mecha-
nisms in CLU,” CACM, vol. 20, no. 8 (August 1977), pp. 564-576. CLU is a programming
language developed around the theme of abstract data types. CLU was one of the first
languages to separate the specification of a data type from its implementation.

[McCarthy 60] McCarthy, J., “Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine,” CACM, vol. 3, no. 4 (April 1960), pp. 184-195.

[Organick 75] Organick, E. I., A. I. Forsythe, and R. P. Plummer, Programming Language
Structures, Academic Press, New York (1975). An introduction to programming languages
that develops the run-time structure of systems based on the contour model.

[Pratt 75] Pratt, T. W., Programming Languages: Design and Implementation, Prentice-Hall,
Englewood Cliffs, New Jersey (1975). Pratt first develops the concepts of programming
languages and then describes several major languages in terms of these concepts.

[Shaw 81] Shaw, M. (ed.), Alphard: Form and Content, Springer-Verlag, New York (1981).
Shaw presents a collection of research papers and reports on Alphard. Alphard is a lan-
guage based on abstract data types.

[Steele 78] Steele, G. L., Jr., and G. J. Sussman, “The Revised Report on SCHEME, a Dialect
of LISP,” Memo 452, Artificial Intelligence Laboratory, M.I.T., Cambridge, Massachusetts
(January 1978). Scheme is a language that features a lexically scoped Lisp with functions
and continuations as first-class objects.

[Stoy 77] Stoy, J. E., Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, M.I.T. Press, Cambridge, Massachusetts (1977).

[Wand 80] Wand, M., Induction, Recursion, and Programming, North Holland, New York
(1980). This book is an elementary introduction to the “mathematics” of computer science.
After developing the theory of sets and functions Wand presents both a denotational
semantics for proving the correctness of Lisp-like programs and an axiomatic semantics
for proving the correctness of imperative programs.

